1. Topology of \mathbb{R}^{n}

Throughout, let $S \subseteq \mathbb{R}^{n}$. Let's recall some definitions from class.
Definition. These definitions are related to subsets of \mathbb{R}^{n}
(1) S is called open if and only if $\forall x \in S$, there exists $\epsilon>0$ such that $B(\epsilon, x) \subseteq S$
(2) S is called closed if and only if S^{c} is open
(3) $\partial S=\left\{x \in \mathbb{R}^{n} \mid \forall \epsilon>0 B(\epsilon, x) \cap S \neq \emptyset\right.$ and $\left.B(\epsilon, x) \cap S^{c} \neq \emptyset\right\}$
(4) int $S=\left\{x \in \mathbb{R}^{n} \mid \exists \epsilon>0 B(\epsilon, x) \subseteq S\right\}$
(5) $\bar{S}=S \cup \partial S$ is called the closure of S. It is the smallest closed set containing S.

Problem 1. Show whether the following subsets of \mathbb{R}^{2} are open, closed, neither, or both open and closed. Describe the interior, the closure, and the boundary.
(1) $S=\emptyset$
(2) $S=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$
(3) $S=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x^{2}+y^{2} \leq 1\right\}$

Part 1: $S=\emptyset$ is open. Given any $x \in S$, we have to produce an open ball around x completely contained in S. As there are no points to consider, the definition of open is vacuously true for the empty set. The empty set is also closed; $\emptyset^{c}=\mathbb{R}^{2}$ which is open. The interior, closure, and boundary of the empty set is still the empty set.

Part 2: The open unit ball is open. Pick any $(x, y) \in B(1,0)$, then let d be the distance from (x, y) to the unit circle. $B((x, y), d / 2) \subseteq B(1,0)$ is a ball around (x, y) completely contained in $B(1,0)$. As $B(1,0)$ is open, we have int $B(1,0)=B(1,0)$. The boundary of $B(1,0)$ is the unit circle $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$.

Part 3: This example is similar to the previous one, only now we have removed a point from the interior of the ball and added the boundary. The set is neither open nor closed. To see that it is not open, pick any point $p \in\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$, then fix any $\epsilon>0$. The ball $B(\epsilon, p)$ necessarily contains points with $x^{2}+y^{2}>1$, therefore no ball around p could be completely contained in S. To see that the set is not closed, notice that $S^{c}=\{(0,0)\} \cup\left\{(x, y) \mid x^{2}+y^{2}>1\right\}$. Any ball $B(\epsilon,(0,0))$ around the origin must contain points in S; therefore, since S^{c} is not open, S is not closed. The interior is int $S=\left\{(x, y) \mid 0<x^{2}+y^{2}<1\right\}$. The boundary of S is $\partial S=\{(0,0)\} \cup\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$. The closure is $\bar{S}=S \cup \partial S=\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

Class Exercise: (Left side of the class) Repeat the previous problem for $S=\{(x, y) \mid x>0$ and $y=\sin (1 / x)\}$. (Right side of the class) Find an example of a set S such that int $S \neq \operatorname{int} \bar{S}$.

Solution: The set is neither closed nor open; to see that it is not closed, notice that any point in $\{(x, y) \mid x=0$ and $y \in[-1,1]\}$ is in the boundary of S, and these points are not in S since $x>0$ for all points in S. The interior of the set is empty.

One example of a set S such that $\operatorname{int} S \neq \operatorname{int} \bar{S}$ is $S=\mathbb{Q} \subseteq \mathbb{R}$. Here, $\operatorname{int} \mathbb{Q}=\emptyset$, but $\overline{\mathbb{Q}}=\mathbb{R}$ and the interior of \mathbb{R} is \mathbb{R}.

Problem 2. If S_{1} and S_{2} are open, so are $S_{1} \cup S_{2}$ and $S_{1} \cap S_{2}$.
Remark: This problem commonly shows up on exams!

Let $S=S_{1} \cup S_{2}$ and pick any $x \in S$, then $x \in S_{1}$ or $x \in S_{2}$. If $x \in S_{1}$, then since S_{1} is open $\exists \epsilon>0$ such that $B(\epsilon, x) \subseteq S_{1} \subseteq S$. If $x \in S_{2}$ then an identical argument holds true; therefore, S is open.

If $S_{1} \cap S_{2}$ is empty then it is open. Now suppose $S=S_{1} \cap S_{2}$ is non empty and pick any $x \in S$, then $x \in S_{1}$ and $x \in S_{2}$. Since S_{1} and S_{2} are open, $\exists \epsilon_{1}, \epsilon_{2}>0$ such that $B\left(\epsilon_{1}, x\right) \subseteq S_{1}$ and $B\left(\epsilon_{2}, x\right) \subseteq S_{2}$. If we set $\epsilon=\min \left\{\epsilon_{1}, \epsilon_{2}\right\}$, then $B(\epsilon, x) \subseteq S_{1}$ and $B(\epsilon, x) \subseteq S_{2}$, therefore $B(\epsilon, x) \subseteq S$. This shows that $S_{1} \cap S_{2}$ is open.

